Is butanol a versatile renewable? Despite the common myth, biomass upgrading is a challenging science. Not only do the practitioners have to break down the complex biomass mixtures efficiently, but they must also contend with numerous other equally (and often times more) important considerations such as low oil prices (per barrel), process safety, waste streams, and chemical toxicity, recycling of solvents/catalysts, process economics, and a multitude of engineering/ technology considerations. Nevertheless, despite the challenges, the ideal outcome of these efforts when accomplished is quite satisfying: a simple, efficient, green, robust, and safe manufacturing process. A showcase of green chemistry, process intensification, and catalysis along with industrial fermentation – Butanol production (with a global market of about 350 million gallons per year) has garnered wide acclaim.
Butanol is an important industrial chemical, which is currently produced either by the Oxo-process starting from propylene with hydrogen and carbon monoxide (usually in the form of synthesis gas) over an expensive rhodium catalyst, or the Aldol-process starting from acetaldehyde, this is usually referred to as the – petroleum-derived approach as the components i.e., propylene and synthesis gas are derived from petroleum/fossil sources. Both these processes are inherently “not green”. The Oxo Process was developed and licensed to the industry through a tripartite collaboration beginning in 1971. The principals were Johnson Matthey & Co. Ltd. (now Johnson Matthey PLC), The Power-Gas Corporation Ltd. (a former name of Davy Process Technology Ltd., now a subsidiary of Johnson Matthey PLC) and Union Carbide Corporation (now a subsidiary of The Dow Chemical Company).
The second, “green” pathway is the ABE-fermentation process (Acetone, Butanol, Ethanol) that was pioneered by Chaim Weizmann during World War I. At the time, the petroleum-derived approach proved to be economically advantageous in comparison to the ABE-fermentation based processes. For this reason, most of the facilities using butanol / acetone fermentation process ceased to operate with a few exceptions in Mainland China. This happened after World War II when rapid development of the petrochemical industry took place.
However, crude oil price fluctuations, coupled with other geopolitical considerations across the globe have sparked an urgent interest in achieving a transition from non-renewable carbon resources to renewable bio-resources. In addition, researchers and start-ups from across the globe have reported on their staggering progress in research and development efforts towards the production of butanol from renewable resources. The ABE-process has since received wide acceptance for a second come back to match mandates around the world to meet the standard blends with the petroleum counterparts. Some start-ups have also claimed their niche in developing butanol from the ubiquitous carbon dioxide, or from Scotch whisky by-products!
A plethora of start-ups and joint ventures flourished since early 2000 and the numbers are growing steadily. For a global overview of start-ups or established organizations based on the biosynthetic approach alongside with the traditional petroleum based approach for comparison see Exhibit 1. The number of start-ups pursuing various aspects of butanol is flourishing more than ever – from carbon dioxide capture, to developing alcohol-to-jet (AtJ) fuel with the potential to deliver aviation biofuels, developing new microbial strains for efficient conversions to butanol, feedstock analysis, to downstream processing. With this astounding pace one would not be surprised to find a start-up next door aiming to be the next analogue of the Oxo-process to synthesize 100% of global butanol production using renewable resources!
Butanol has since successfully made the transition from a commodity chemical to a fuel additive specially when it is compared to a much hygroscopic and less energy dense – ethanol. Butanol is versatile for many reasons – one could use it as a fuel additive or chemically transform it to high value high volume precursors such as butanal (global production around 6.6 x 106 tons/year), glycol ethers, butyl acrylates, solvents – butanol by itself can be used as a solvent or converted to the more widely used (“workhorse”) plasticizer such as 2-ethyl hexanol (global production around 2.5 x 106 tons/year) etc. So, if you are contemplating your niche in downstream processing to focus on renewable chemicals or plastics, you may consider butanol conversion to lucrative chemicals markets.
You may choose to go to the other end of the spectrum and consider making alcohol-to-jet (AtJ) fuels with the butanol platform. For example, a plane like a Boeing 747 consumes approximately 1 gallon of fuel (about 3.78 liters) per second. Over the course of a 10-hour flight, (say from Berlin, Germany to New York, United States) it burns about 36,000 gallons (150,000 liters). The Boeing 747 consumes approximately 5 gallons of fuel per mile (12 liters per kilometer). So you would make multitude volumes of the fuel to meet the blending requirements in the aviation department. With the right tools in your belt this is certainly achievable.
If you are a smaller/medium sized start-up with a novel idea working on designing a proof-of-concept pilot before venturing into a full scale demo or commercial plant or just planning to expand your patent portfolio or a big conglomerate planning to be brand ambassadors for developing sustainable solutions for tomorrow based on the butanol platform we would love to hear from you.
Large renewable energy and biochemical consulting firms like Lee Enterprises Consulting normally offer a wide range of services in biofuels, biochemicals, biotechnologies, biomaterials, synthetic biology commercialization, feedstocks, and hemp/cannabis. These companies should have business and financial services like due diligence, feedstock availability, grants and loans and bio market research. The company also offers technical and engineering related services like techno economic analysis, environmental evaluations, feasibility studies, risk analysis and expert witness engagements. They might also have strategic partnerships in place to assist clients with insurance, legal, accounting, plant fabrication, feedstock procurement.
With over 150 experts worldwide, Lee Enterprises Consulting has experts in many specific clean and renewable areas, including anaerobic digestion, fermentation, biomass, conversion technologies for things like tires and railroad ties, organic synthesis, fuel additives, ethanol gas, biodiesel fuel including algae biofuels, solid state and industrial fermentation, green energy grants, ag biotech, agricultural waste, alcohol fuels, alternative proteins and animal-free products, sustainable foods, beverage fermentation, biocatalysis, biodiesel conversion, biogas production, biomass power, carbon intensity, co2 utilization, combined heat & power, Fischer-Tropsch technology, food waste, hydrothermal carbonization, industrial enzymes, landfill management, microbial fermentation, organic synthesis, plastic pyrolysis, plastic recycling, plastic waste, pyrolysis oil, reactor design, renewable identification number, the Renewable Fuel Standard (rfs2), solid recovered fuels, torrefaction and torrefied biomass, waste to energy, and waste-to-hydrogen. This is a multidisciplinary group of green energy consultants that is a virtual “one stop shop” for any client need and handles projects of all types and sizes.
Look at our experts and the services we provide. Most of our experts are also available to advise and serve as expert witnesses in bioeconomy litigation matters. For the larger projects, we specialize in putting together full service, interdisciplinary teams with one point of contact. See video about LEC here. Call us at 1+ (501) 833-8511 or email us for more information.