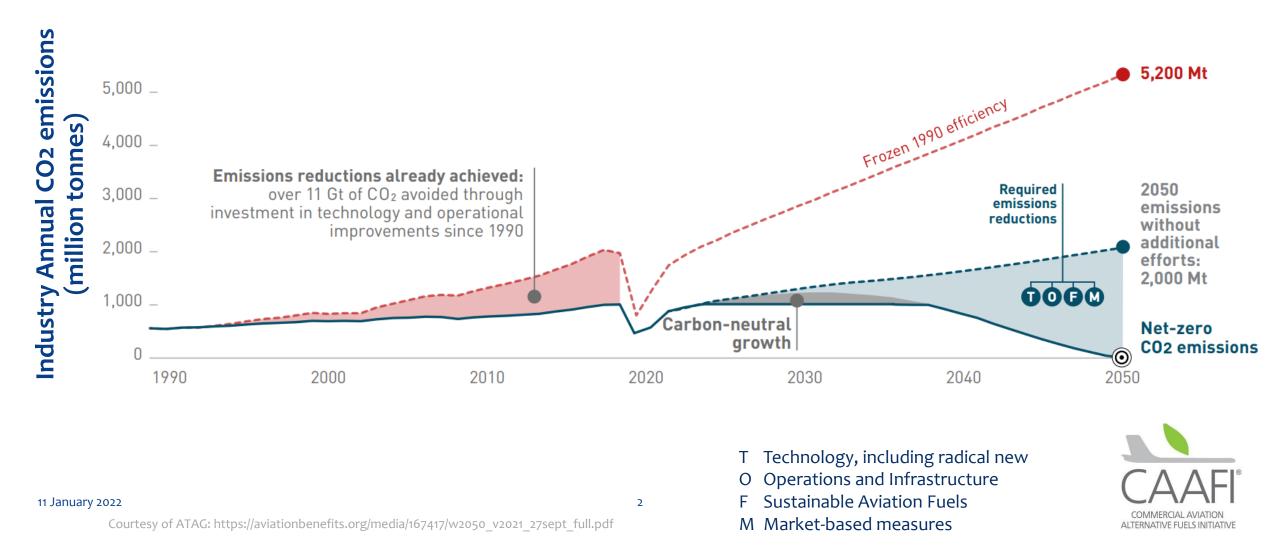
Sustainable Aviation Fuel (SAF) Update

Team Call update, 11Jan'22

Steve Csonka Executive Director, CAAFI



First flight from continuous commercial production of SAF: UAL 0708, 10 March 2016, LAX-SFO

Fuel from World Energy - Paramount (HEFA-SPK 30/70 Blend)

11Jan'22

Civil Aviation commitments on CO2 reductions

Aviation is committed to the use of SAF

- * Airline commitment at 28Sep IATA/ATAG Forum: NZC by 2050, with a focus on SAF
- * Further commitments to 10% SAF usage by 2030
 - * A4A & US Government Grand Challenge Announcement, 09Sep'21
 - * 60 companies in Clean Skies for Tomorrow program (IAG, oneworld, ...), 22Sep'21
- * Business Aviation similar commitments at 12Oct'21 NBACE
- Offtake committed for SAF production slates from first 7+ refineries, 5–15 years
- * CORSIA incorporates SAF, developing new Long-Term Goal in current CAEP Cycle
- * Countries now adopting additional targets and policy approaches for domestic SAF usage (RFS, LCFS, tax policy), including SAF blending mandates in the EU
- * Aviation also interested in carbon abatement via adjacent tech: PtL, BECCS, DACCS
- * OEMs and DOD continuing R&D, evaluating acquisition options

3 B gpy by 2030

35 B gpy by 2050

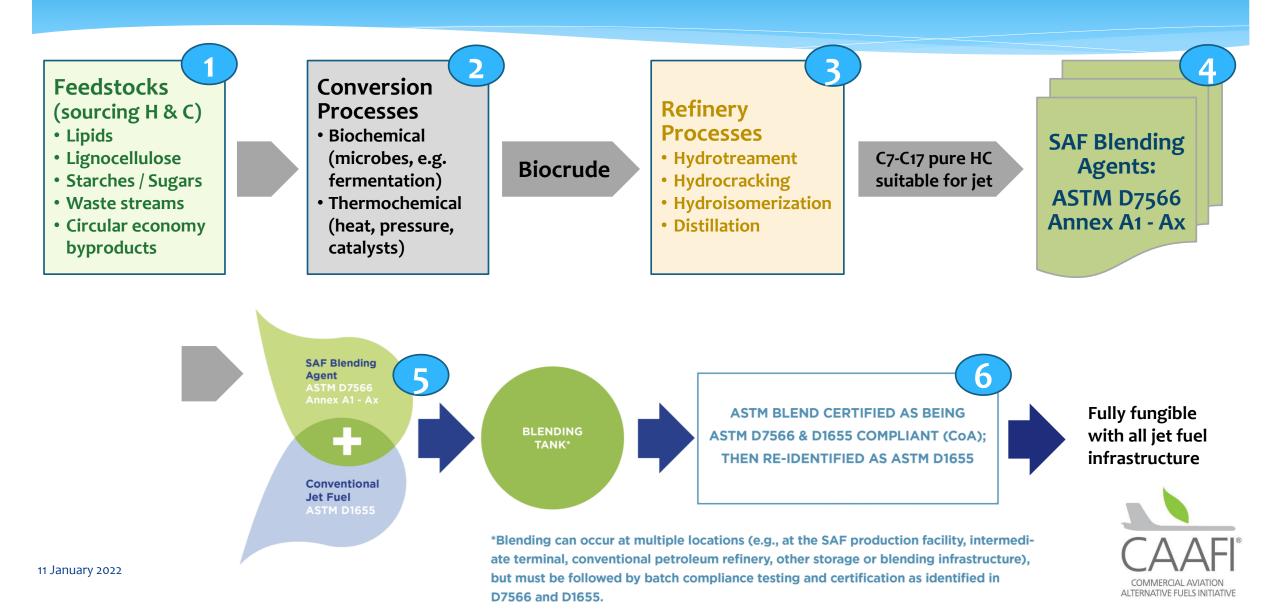
What is SAF (Sustainable Aviation Fuel)? a.k.a. aviation biofuel, biojet, alternative aviation fuel

Aviation Fuel: Maintains the certification basis of today's aircraft and jet (gas turbine) engines by delivering the properties of ASTM D1655 – Aviation Turbine Fuel – enables drop-in approach – no changes to infrastructure or equipment, obviating incremental billions of dollars of investment

Sustainable: Doing so while taking Social, Economic, and Environmental progress into account, especially addressing GHG reduction

How: Creating synthetic jet fuel with biochemical and thermochemical processes by starting with a different set of carbon molecules than petroleum ... a synthetic comprised of molecules essentially identical to petroleum-based jet (in whole or in part)

... Unabashedly - Lowest societal-impact way to decarbonize civil aviation!!



Why SAF?

- Industry growing faster than new efficiency-technology can be incorporated, and radical new technology likely cannot <u>start impacting</u> fleet prior to 2040
 * Operations and infrastructure have limited, modest inefficiencies
- * SAF delivers significant net lifecycle carbon reductions as a drop-in fuel
- * SAF is available starting yesterday
- * SAF usage can grow quickly when appropriately enabled/required by policy
- * Progress being made on remaining technical barriers
- * SAF commercial development can take place worldwide, commensurate with the available resources

How SAF is made - Biorefinery example

Aviation industry path to SAF evaluation and qualification – foundation of enabling specifications

* ASTM D1655 - Standard Specification for Aviation Turbine Fuels

- * **A1.1.2** ... Aviation turbine fuels with synthetic components produced in accordance with Specification D7566 meet the requirements of Specification D1655.
- * ASTM D4054 Standard Practice for Qualification and Approval of New Aviation Turbine Fuels
 - * **1.1** This practice covers and provides a framework for the qualification and approval of new fuels and new fuel additives for use in commercial and military aviation gas turbine engines...

* ASTM D7566 - Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons

* 1.2 ... Aviation turbine fuel manufactured, certified and released to all the requirements of this specification, meets the requirements of Specification D1655 and shall be regarded as Specification D1655 turbine fuel.

Sourced from CAAFI (Commercial Aviation Alternative Fuels Initiative - see www.caafi.org), 14Mar2021.

Information herein originates from the definitions in ASTM D7566 as well as industrial knowledge emanating from the work of CAAFI and industry practitioners.

ASTM D7566 Annex	Technology Type	Process Feedstock	Process Feedstock Sources	Blend Requirement	Certification Date	Technology Developer*/ Licensor	Commercialization Entities
	Fischer-Tropsch Synthetic Paraffinic Kerosene (FT-SPK)	Syngas (CO and H ₂ at approximately a 1:2 ratio)	Gasified sources of carbon and hydrogen: Biomass such as municipal solid waste (MSW), agricultural and forestry residues, wood and energy crops; Industrial off-gases; Non-renewable feedstocks such as coal and natural gas.	Yes, 50% max	2009	** Sasol , Shell, Velocys, Johson Mathey/BP, …	Sasol, Shell, Fulcrum, Red Rock, Velocys, Loring, Clean Planet Energy,
A2	Hydroprocessed Esters and Fatty Acids Synthetic Paraffinic Kerosene (HEFA-SPK)	Fatty Acids and Fatty Acid Esters	Various lipids that come from plant and animal fats, oils, and greases (FOGs): chicken fat, white grease, tallow, yellow grease, brown grease, purpose grown plant oils, algal oils, microbial oils.	Yes, 50% max	2011	UOP/ENI, Axens IFP, Neste, Haldor-Topsoe, UPM, REG	World Energy, Neste, Total, SkyNRG, SGPreston, Preem,, many entities using technology for renewable diesel too
	Hydroprocessed Fermented Sugars to Synthetic Isoparaffins (HFS-SIP)	Sugars	Sugars from direct (cane, sweet sorghum, sugar beets, tubers, field corn) and indirect sources (C5 and C6 sugars hydrolyzed from cellulose);	Yes, 10% max	2014	Amyris	Amyris / Total
A4	Fischer-Tropsch Synthetic Paraffinic Kerosene with Aromatics (FT-SPK/A)	Syngas	Same as A1, with the addition of some aromatics derived from non- petroleum sources	Yes, 50% max	2015	Sasol	none yet announced
A5	Alcohol to Jet Synthetic	C2-C5 alcohols (limited to ethanol and iso-butanol at present)	C2-C5 alcohols derived from direct and indirect sources of sugar (see A3), or those produced from microbial conversion of syngas	Yes, 50% max	2016	Gevo, Lanzatech, (others pending including Swedish Biofuels, Byogy,)	Gevo, Lanzatech
A6	Catalytic Hydrothermolysis Synthesized Kerosene (CH-SK, or CHJ)	Fats, Oils, Greases	Same as A2	Yes, 50% max	2020	Applied Research Associates (ARA) / CLG	ARA, Wellington, Sunshine, Euglena,
A7	Hydroprocessed Hydrocarbons, Esters and Fatty Acids Synthetic Paraffinic Kerosene (HHC-SPK , or HC-HEFA)	Algal Oils	Specifically, bio-derived hydrocarbons, fatty acid esters, and free fatty acids. Recognized sources at present only include the tri- terpenes produced by the Botryococcus braunii species of algae.	Yes, 10% max	2020	IHI Corporation	IHI

* The entity who was primarily responsible for pushing the technology through aviation's D4054 qualification is shown in bold.

** There are 3 major systems associated with FT conversion: Gasification, Gas Clean-up, and Fischer-Tropsch Reactor. This column focuses on the FT reactor only. There are over a hundred gasification entities in the world, and several of the major oil companies own and utilize gas clean-up technology. Further, up to the current time, FT reactors were only produced at very large scale. The unique technology brought to the market by Velocys *et al.* is a scaled-down, micro-channel reactor appropriately sized for processing of modest quantities of syngas as might be associated with a biorefinery.

ASTM D4054 progression history

Time and fuel volume requirements for industry approval continue to drop due investments made by FAA and others

ASTM	Fuel Type	ASTM data review	Final phase II research report	Addition to ASTM Specification (D7566)	Estimated gallons of fuel produced for testing	Estimated time from first review to approval		Commercial Entity
D7566 Annex								
A1	FT-SPK	09/2007 est.	09/2008	09/2009	710,000 ¹	3 years	Mostly normal/ iso-paraffins	Sasol
A2	HEFA-SPK	06/2008 est.	05/2010	07/2011	626,000²	3 years		various
A3	HFS-SIP*	06/2011	04/2013	06/2014	16,000	3 years		Amyris
A5	ATJ-SPK (isobutanol)	12/2010	04/2015	06/2016	93,100 ³	$5^{1/2}$ years		Gevo
A5	ATJ-SPK (ethanol)	09/2016	07/2017	04/2018	50 ⁴	$1 \frac{1}{3}$ years		LanzaTech
A4	FT-SPK/A			11/2015			A1 with addition of aromatics	Sasol
A6	СНЈ	06/2012	10/2018	01/2020	79,000	7 years	Wider range of molecules	ARA/CLG
A7	HHC-SPK HC-HEFA**	02/2019	06/2019	03/2020	50	~1 year	~40% cycloparaffin	IHI

¹USAF fuel purchases in 2007-08 for fleetwide qualification

²USAF & Navy fuel purchases in 2009-11 for fleetwide qualification

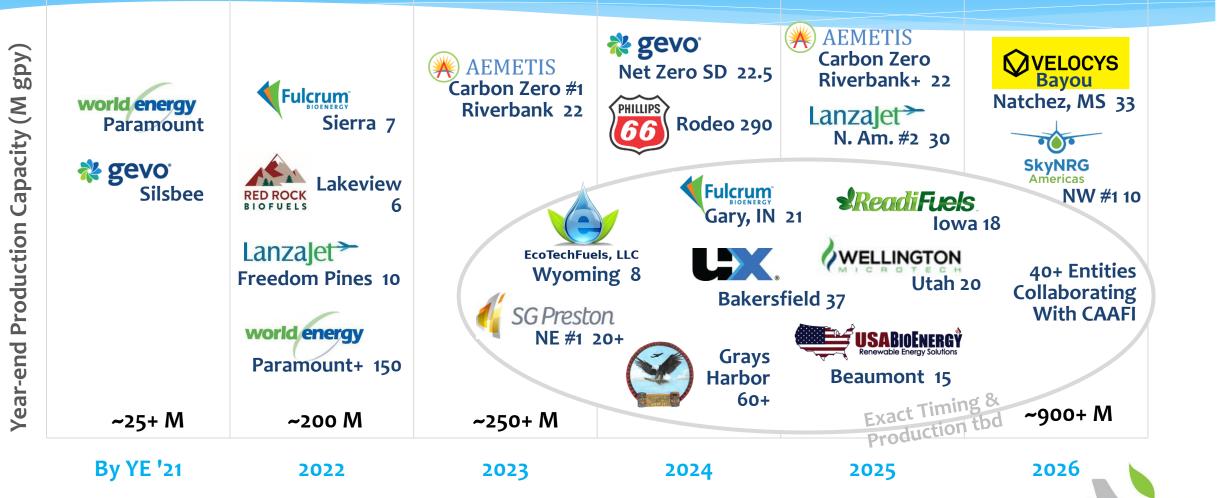
³USAF, Navy and CLEEN fuel purchases in 2012-2014

⁴Only Tier 1-2 testing due to existing knowledge base and similarity to approved fuels

*Approved at 10% volume

**First Fast Track approval – approved at 10% volume blend limit ARA/CLG – Applied Research Associates / Chevron Lummus Global Find additional details in either ASTM D7566 or keep up to date at: http://www.caafi.org/focus_areas/fuel_qualification.html

SAF Progress - technical


- * SAF are becoming increasingly technically viable
 - * Aviation now knows we can utilize numerous production pathways
 - (7 approved, 6 in-process, >15 in pipeline)
 - * Exploring expanded use of all major sustainable feedstocks
 - * Focus on 24x7, low-cost types to enable affordability and capitalization
 - * Some future pathways will produce blending components that will need less, or zero, blending
 - * Expanding exploration of renewable crude co-processing with refineries
 - * Continuing streamlining of qualification time, \$, methods
- * Challenge remaining is achieving reasonable cost and expanding production

In process SAF Pathways, via D4054 process Additional technologies applicable to SAF

U.S. SAF production capacity forecast Announced intentions, neat*

- Not comprehensive; CAAFI estimates (based on technology used & public reports) where production slates are not specified. Does not include various small batches produced for testing technology and markets.
- Does not include fractions of substantial Renewable Diesel capacity (existing and 10B gpy in-development) that can be pivoted to SAF based on policy support

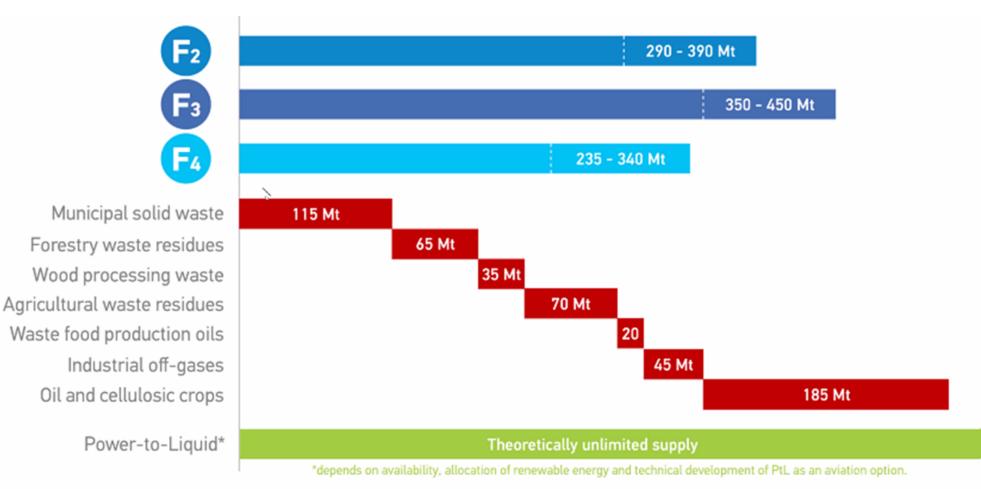
ALTERNATIVE FUELS INITIATIVI

11 January 2022

How we achieve SAF commitments / goals

* Affordability

- * Conversion technologies, system integration
- * Lower cost feedstocks, higher carbon utilization
- * Learning curve advancements and supply chain optimization
- * Worldwide production expansion
 - * All areas, local feedstock types
 - * Additional grass roots efforts (like CAAFI, AIREG, ...)
- * Policy assistance to help bridge gaps of affordability and production
 - * Valorization of additional environmental / societal services


SAF production potential Targets of opportunity that do not compete for food or land use change

Waypoint 2050 scenario requirements for SAF in 2050

(range depends on the emissions reduction factor of the fuels)

Analysis of SAF production potentials

(very conservative estimate using strict sustainability criteria)

Source: WEF Clean Skies for Tomorrow analysis with ATAG and IATA additions

www.aviationbenefits.org | 12

SAF Challenges

... or Opportunities

- * A new industrial sector
- * SAF affordability –vs- petroleum
- * Equitable treatment with road fuels
- * Impact to petroleum industry

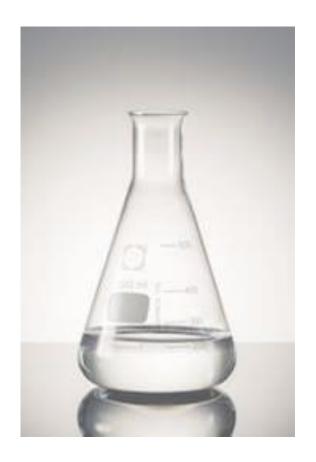
- * Double production every year
- * Significant investment
- * Food –vs- Fuel

But from mature sectorial components Fully burdened cost of petroleum & carbon; Have not even initiated learning curves Synergistic production; Fed. Gov't support SAF synergistic with petroleum infra.; Robust aviation sector; 483,000 SAF jobs; every state contributes \$21B investment – but only 6% of petroleum's **Capital available for sound business cases;** Can be enablesd by policy support Food and fuel, and fiber, and feed

Overall industry summary on SAF:

SAF are key for meeting industry's commitments on carbon reductions

- Aviation enterprise aligned, representing a 26B gpy US & 97B gpy worldwide opt'y
- → Jet fuel demand expected to increase for foreseeable future ... 3 5% per year (following COVID rebound)
- → SAF delivers net GHG reductions of 65-100+%, other enviro services
- Segment knows how to make it; Activities from FRL 1 to 9, with many in "pipeline"
- → CAAFI and others are working to foster, catalyze, enable, facilitate, ... every region should consider
- ✤ First 6 facilities on-line worldwide (5 from lipids), increasing run-rates, multiple offtakers
- Commercial agreements being pursued, fostered by policy and other unique approaches
- Industry removing barriers: Pathways identified for fully synthetic SAF (50% max blend today), enhancing SAF value proposition by enabling deeper net-carbon reductions
- Additional work needed on "appropriate conversion process for targeted feedstocks" enabling affordability with sustainability


Steve Csonka Executive Director, CAAFI +1-513-800-7980 Csonka.CAAFI.ED@gmail.com Steve.Csonka@caafi.org www.caafi.org info@caafi.org

COMMERCIAL AVIATION ALTERNATIVE FUELS INITIATIVE

Next CAAFI Biennial General Meeting 01-03Jun'22, Washington, D.C.

