

NTERNATIONAL BIOMASS
TORREFACTION COUNCIL

AN AEBIOM NETWORK

Torrefaction of Biomass-Status & Market Requirements, Supply Chain Efficiency Comparison

Michael Wild
Wild&Partner LLC, Vienna, Austria
IBTC, Brussels, Belgium

November 2018

IBTC Full Members

IBTC Associated Members

Principle and Simplified Mass Balance

While processed, about 30% of its mass is extracted from the biomass paralleled by 15% energy content loss. This energy (the volatiles) is used to heat the ACB process.

Carbonisation Reaction under Heat

The torrefaction process (example ACB) W&P

Product Form Factors

Torrefaction Implementation Indicator

Torr-gas Handling and Utilisation	done
Continuous torrefaction	done
Predictability and consistency of product	for most feedstock
Densification	done
Feedstock flexibility	done
Plant Safety	done
Indoor storage	done
Outdoor storage	in optimisation
Standardisation of product	ISO TS 17225-8
Safety along supply chain	in progress
Trade Registrations and Permissions	in progress
Co-firing trials	done in EU
Co-firing burn tests	several done
Co-firing full scale	several done
Heat application trials	in progress
Further industrial applications trials	in progress
	MW 10 2018

Understanding the Product

- Torrefaction pre-processes and upgrades the biomass feedstock
- Number of technology Suppliers FUNGIBLE PRODUCT
- Shapes of pellets or briquettes for storage and transport
- Well defined within ISO Technical Specification ISO 17225-8
- Immediate biomass blending into coal stream in existing coal fired plants –grindability, water resistance, storability, morphology....
- Almost 0 biodegradation of product when stored
- Combusts cleaner, gasifies easier and cleaner
- NCV highest of all solid biofuels and best adjustable
- Reduces carbon footprint of supply chain substantially

.. Herbaceous

3. Fruit biomass

D06 to D25, D ± 1;

3,15 < L ≤ 40

(from D06 to D10)

3,15 < L 5 50 (from D12 to D25)

DU95.0 ≥ 95,0

F3.0 ≤ 3,0

Type and amoun

to be stated

Value to be stated

BD550 ≥ 550

S0.3 ≤ 0,3

C10.3 ≤ 0,3 /alue to be stated

4. Aquatic biomass

ded pellets produced by thermal processing of non-woody biomass

2. Herbaceo

D06 to D25, D ± 1;

3,15 < L ≤ 40

(from D06 to D10)

3,15 < L 5 50 from D12 to D25)

Type and amount

to be stated

Q17≥17 or

Q4.7 ≥ 4,7 Value to be stated

N2.0 ≤ 2,0

CI0.2 ≤ 0.2

≤ 20 < 0,1

Value to be stated

Should be stated

sing aids, slagging inhibitors or any other additives like

deformation temperature (DT), hemisphere

-%. Maximum length shall be ≤ 45 mm.

d according standard ISO 18846

3. Fruit biomass

4. Aquatic biomass

rom agriculture and

2.2.1 By-products and

residues from food and

nerbaceous processing

intreated herbaceous 3.1 Orchard and horticultu 3.2.1 By-products and residues from food and fruit

processing industry, 4. Aquatic biomar D06 to D25, D±1; 3,15 < L ≤ 40

(from D06 to D10)

3,15 < L ≤ 50

(from D12 to D25)

A5.0 ≤ 5,0 DU97.5 ≥ 97 F2.0 ≤ 2.0

Type and amoun

to be stated

Q5.0 ≥ 5.0

alue to be stated

stated

ISO 17225

Solid biofuels -Fuel specifications and classes

ISO TS 17225 - 8:

Part 8: Graded thermally treated and densified biomass fuels

Different Classes

Wood-Non Woody; NCV, Durability, Bulk Density, Volatile Matter etc.

Parameters in standard development:

Grindability Water resistance

ISO/TS 17225-8:2016 Table 1 — Specification of graded pellets produced by thermal processing of woody biomass

Table 2 - Specification

Table 1 — Specification of			TW1L	TW2H	TW2L	TW3H		
Analysis method	Unit	TW1H				1.1 Forest, p	lantation	
roperty class, Analysis method			without	1.1 Forest, pl		1.1 Forest, p and other vi	rain wood	
ormative	1	1.1.1 Whole trees without roots 1.1.3 Stemwood		and other virgin wood a		1.2 By-products and		
rigin and source, SO 17225-1 Table 1				1 2 By-prod	ucts and	regidues fr	om wood	
50 17225-1 Table 1		1.1.3 Stellar	esidues	residues fro	m wood	processing	industry	
		1.1.4 Logging 1	untreated	processing	industry	1 3.1 Che	mically	
	1	wood by-prod	ucts and	1.3.1 Cher untreated u	micany	untreated t	ised wood	
		residue	S.ª	untreated u	or D + 1.	D06 to D25, D ± 1;		
	-	D06, 6 ± 1;		D06 to D25, D ± 1; 3,15 ≤ L ≤ 40		3.15	3.15 < L ≤ 40	
Diameter, D ^b and Length L ^c	mm	D08, 8 ± 1; 3,15 ≤ L ≤ 40		(from D06 to D10) 3,15 ≤ L ≤ 50 (from D12 to D25)		(from D	(from D06 to D10)	
ISO 17829	1					3,15 ≤ L ≤ 50 (from D12 to D25)		
According Figure 1	1							
11.15 May 2011	1			M08 ≤ 8	M10 ≤ 10	M10 ≤ 10		
	w-%	M08≤8	M10 ≤ 10	MOOSO	611 80	1		
Moisture, M d,	as received,					-		
ISO 18134-1, ISO 18134-2	wet basis		4.2	A3.0	≤3,0	A5.0 ≤ 5,0 DU95.0 ≥ 95,0		
	w-% dry	A1.2 ≤ 1,2 DU97.5 ≥ 97,5		DU96.0 ≥ 96,0		DU95.0 2 93,0		
Ash, A, ISO 18122 Mechanical durability, DU,	w-%	DU97.5	277,3	100000000		0 F6.0 ≤ 6,0	F3.0 ≤ 3,0	
Mechanical durability, Do,	as received	F2.0 ≤ 2,0	F1.0 ≤ 1,0	F4.0 ≤ 4,0	F2.0 ≤ 2,	0 F6.0 ≤ 0,0	15.0	
ISO 17831-1 Fines, F *, ISO 18846	w-%		12600 5000			-		
Fines, F *, ISO 10010	as received	< 4.		tol		Type and	amount to be	
Additives [†]	w-% dry	w-% dry Type and amount to be state		ed Type and amount to be		, JP	tated	
				Q _d ≥ 21,0 Q _d < 21		0 Od 2 21,) Va - La,	
	MI/kg or	Q _d ≥ 21,0	Qd < 21,0	Qd ≥ 21 Qd ≥ 5,	8 Qa < 5,	B Q4 ≥ 5,8	Qd < 5,8	
Net calorific value, Qa ^g , ISO 18125	kWh/kg	Q _d ≥ 5,8	Q _d < 5,8 to be stated	Value to be state		Value to be stated		
	dry basis	Value to				BD	BD550 ≥ 550	
	kg/m³			Value to be stated		Value	Value to be stated	
Bulk density, BD,	as received					_		
ISO 17828	asteed			Value to be stated			Value to be stated	
	w-% dry	Value to be stated		N0.4 ≤ 0,4		N1.0 5 1,0		
Carbon, C, ISO 16948	w-% dry	NO.	4 ≤ 0,4	SO.	\$0.05 ≤ 0,05		S0.1 ≤ 0,1	
Nitrogen, N, ISO 16948	w-% dry	\$0.04 ≤ 0,04		CIO	C10.05 ≤ 0,05		Cl0.1 ≤ 0,1	
Sulphur, S, ISO 16994	w-% dry	C10.03 ≤ 0,03			≤2		≤2	
Chlorine, Cl, ISO 16994	mg/kg dry	7	≤1	_	≤1		≤2	
Arsenic, As, ISO 16968	mg/kg dr	v ≤ 0,5		≤15		≤15		
Cadmium, Cd, ISO 16968	mg/kg dr	v ≤10			≤20		≤ 20	
Chromium, Cr, ISO 16968	mg/kg dr	v = 10		≤10		≤10 ≤0,1		
Copper, Cu, ISO 16968	mg/kg dr	v ≤10		≤ 0,1		< 10		
Lead, Pb, ISO 16968	mg/kg di	v ≤0,1		≤10		≤10 ≤100		
Mercury, Hg, ISO 16968	mg/kg di	rv ≤10		≤ 100		- La stator		
Nickel, Ni, ISO 16968	mg/kg d			Value to be stated		ted Va	ed Value to be stated	
Zinc, Zn, ISO 16968	123 w-% dr	y Value	to be stated				To be stated	
Volatile matter, VM, ISO 18123 w-% dry			- 1 - 11-1		To be stated		10 be stated	
Informative Ash melting behaviour h,	oC.	To	To be stated		(< 1 w-%) used in sawmills		aduction of	

- Negligible levels of glue, grease and other timber production additives (< $1\,\mathrm{w}$ %) used in sa timber and timber product from virgin wood are acceptable if all chemical parameters of the pellets are clearly within the limits and/or concentrations are too small to be concerned with.
- For D06 to D10 the amount of pellets longer than 40 mm can be 1 w-%. Maximum length shall be \leq 45 mm.
- At the point of delivery. Fines less than 3,15 mm are screened by hand according standard ISO 18846.
- Type of additives to aid production, delivery or combustion (e.g. pressing aids, slagging inhibitors or any other additives like
- Net calorific value as received (Q) resulting from net calorific value on dry basis 21,00 MJ/kg and moisture content (M) 8% is 19,13 MJ/kg (5,3 kWh/kg) and by 10 % moisture content (M) is 18,65 MJ/kg (5,2 kWh/kg). All characteristic temperatures (shrinkage starting temperature (SST), deformation temperature (DT), hemisphere temperature (HT) and flow temperature (FT)) in oxidizing conditions should be stated.

©Wild&Partner

Technically in all parameters superior to Wood Pellets

20 days

Minimum Ignition Energy Pulverised torrefied pellets vs. pulverised raw biomass chips

Fuel Morphology, pneumatic transport

Pellets stored 20 days at 20° C at 95% relative humidity

- Dry matter losses significantly higher for white wood pellets, compared with torrefied wood pellets
- Also after uncovered outdoor exposure for 3 months

Biological Degradation

Water Resistance

Source: Carbo et al. "Fuel pre-processing, pre-treatment and storage for co-firing of biomass and coal" in "Fuel Flexible Energy Generation" ed. J. Oakey, 2015

Energy Balance Comparison

Study carried out by ECN, UMEA university and CENER

Advantages in Logistics

WWP versus TP: Energy consumed in shipping in MJ/GJ shipped

Energy Consumption from vessel to plant stockyard in MJ/GJ

WWP versus ca. 21/30 GJ TP -

Energy consumed in MJ per GJ energy delivered to Consumer stockpile

GHG Comparison

Positive Experience in co-firing

DONG Studstrup-3 experience

- Two units with total capacity of 714 MW_e and 986 MW_{th}
- Dedicated milling on MPS roller mill adapted for either coal or white pellets
- 200 tons of Andritz/ECN torrefied spruce pellets during 8 hours trial
- Co-firing share: 33 wt%
- Observations:
 - No dust formation during unloading
 - Sufficiently high durability; no issues with dust formation in chain conveyors
 - Normal Minimum Ignition Energy (MIE)
- ECN conducted lab-scale characterisation of pellets Source: ECN

Feedstock Flexibility

The thermal treatment of the biomass during the torrefaction process can reduce the organically bound chlorine up to 90%

By this Torrefaction is the processing that does open up the energy market for Agricultural by products, grassy crops and other unused biomasses with unacceptable high Chlorine content

The effect is a significant: reduction in the feedstock costs Side effect: no sustainability concerns

Diversity of Products

Volume Product: Fuel for Pulverized Coal Power Plants

Value Products: Fuel for Heating

Fuel for Process Energy Needs

Feedstock for Gasification

Soil enhancer

Carbon provider for Plastics industry

Activated Carbon

Products for new (niche) markets

Messages to take home

- Integrated Torrefaction Process Technology mature, available, happening
- Feedstock Flexibility
- Fungible Standard (ISO) Product with adjustment possibilities
- Superior behaviour to all other solid biomasses
- Lowest CO2 footprint
- Ships like coal, stores like coal, mills like coal and combusts like coals
- Reduced sensitivity to changes in cost factors along the supply chain
- Torrefaction is happening in industrial plants
- Product supply available: Project pipelines in Asia and Globally

Not many reasons using the intermediate products from wood, go for the final products and capitalize on the advantages

Thank you for paying attention

Contact

Michael Wild

Wild & Partner LLC michael@wild.or.at

Rohrbacherstrasse 9 A-1130 Vienna T +43 676 6117622

Skype: wildwien

IBTC – International Biomass Torrefaction Council

Place du Champ de Mars 2, 1050 Brussels

michael@wild.or.at; calderon@bioenergyeurope.org
 http://www.biomasstorrefaction.org